JuliaSimCompiler API
JuliaSimCompiler.IRState
JuliaSimCompiler.IRState
JuliaSimCompiler.IRSystem
JuliaSimCompiler.SymArr
JuliaSimCompiler.SymIR
JuliaSimCompiler.SymNum
JuliaSimCompiler.Dt
JuliaSimCompiler.Par
JuliaSimCompiler.Var
JuliaSimCompiler.atomic_update_runtime_state!
JuliaSimCompiler.collapse
JuliaSimCompiler.compute_children_maps
JuliaSimCompiler.derivative
JuliaSimCompiler.execute_statemachine
JuliaSimCompiler.handle_clocks
JuliaSimCompiler.jacobian
JuliaSimCompiler.loopend
JuliaSimCompiler.loopstart
JuliaSimCompiler.make_array
JuliaSimCompiler.optimize
JuliaSimCompiler.peephole_opt!
JuliaSimCompiler.set_array
JuliaSimCompiler.substitute
JuliaSimCompiler.toexpr
ModelingToolkit.structural_simplify
JuliaSimCompiler.SymIR
— TypeJuliaSimCompiler.IRState
— Typestruct IRState <: TransformationState{IRSystem}
An efficient data structure for structural_simplify
.
Fields
sys
: The system to be transformed.vars
: A full list of symbolic variables in the system.vs
:bindings(sys.ir)[vs[i]] == vars[i]
for all validi::Int
.ps
:bindings(sys.ir)[ps[i]]
is thei
-th parameter for all validi::Int
.es
:bindings(sys.ir)[es[i]]
is thei
-th equation of the system.incidence
:incidence[i]
is the incidence of thei
-th equation of the system.par_graph
: Thepar_graph
is the bipartite graph of the equation-parameter system.structure
: Structural information.info
: Metadata of the system.classes
See also: IRSystem
.
JuliaSimCompiler.IRState
— MethodIRState(sys::IRSystem) -> IRState
Construct an IRState
from an IRSystem
.
JuliaSimCompiler.IRSystem
— Typestruct IRSystem <: ModelingToolkit.AbstractODESystem
A system of differential-algebraic equations.
Fields
ir
: The IR that defines the system\[0 = F(u^{(n)}, ..., u', u, p, t).\]
unknowns
: The symbolic representation of the aforementionedu
vector.ps
: The symbolic representation of the aforementionedp
vector.t
: The symbolic representation of the aforementionedt
scalar.info
: System metadata.events
JuliaSimCompiler.SymArr
— Typestruct SymArr{N} <: AbstractArray{Real, N}
A symbolic IR type that represents an array. A collapsed representation of the IR is printed by default to save screen space. Use show(ir)
to print the full list.
SymArr
should be used for tracing only. One should almost always use SymIR
for manipulations.
Fields
bindings
: A list ofIRElement
s whereSSAValue(x::Int)
refers to thex
th entry ofbindings
.
JuliaSimCompiler.SymNum
— Typestruct SymNum <: Real
A symbolic IR type that represents a scalar. A collapsed representation of the IR is printed by default to save screen space. Use show(ir)
to print the full list.
SymNum
should be used for tracing only. One should almost always use SymIR
for manipulations.
Fields
bindings
: A list ofIRElement
s whereSSAValue(x::Int)
refers to thex
th entry ofbindings
.
JuliaSimCompiler.Dt
— FunctionDt(name::Symbol, n)
Create a differentiated variable of order n
. If n
is not specified, it is 1. The third argument of Dt
in printing states its "dummy"-ness. A dummy variable is a variable that appears to be differentiated in a differential-algebraic equation (DAE) system, but is not actually differentiated with respect to the structurally transformed DAE system.
JuliaSimCompiler.Par
— FunctionPar(name::Symbol, size = ())
Create a parameter with name name
and size size
.
JuliaSimCompiler.Var
— FunctionVar(name::Symbol, clock = nothing, size = ())
Create a variable with name name
and size size
.
JuliaSimCompiler.atomic_update_runtime_state!
— Methodprevious = current
for all fields in the runtime state
JuliaSimCompiler.collapse
— Methodcollapse(x::SymIR) -> SymIR
For debugging and pretty printing purposes only. The collapsed IR isn't valid for most transformations. Contract away all SSA values that are used only once and inline all constants.
JuliaSimCompiler.compute_children_maps
— MethodCompute maps from state and partition indices to indices of child partitions
JuliaSimCompiler.derivative
— Methodderivative(x::SymIR, t::Union{SymIR, IRElement}) -> SymIR
Compute the derivative of x
with respect to t`.
JuliaSimCompiler.execute_statemachine
— Methodsol = execute_statemachine(sm, parammap, N; dt = 1, verbose = false, save_rts = false)
Testing utility: Execute the statemachine sm
for N
steps with a time step of dt
.
Arguments:
sm
: State machine obtained fromJuliaSimCompiler.build_state_hierarchy(model)
parammap
: A parameter map with initial conditions and parameters.N
: Number of steps to execute.dt
: The time step.verbose
: Verbose printing for debugging purposessave_rts
: Save the runtime state at each time step (tihs is expensive but useful for debugging)
Returns:
A StateMachineSolution
object with the following fields:
X
: A matrix nx × (N+1) of state values at each time step, starting with the initial condition.state_activity
: A matrix of size nstates × N with a boolean indicating if the state was active at each time step.state_names
: A vector of state names.runtime_states
: (Only ifsave_rts = true
) A vector containing the runtime state at each time step.
JuliaSimCompiler.handle_clocks
— Functionhandle_clocks(ir_sys)
Run clock inference and generate discrete callbacks for each discrete-time partition.
Arguments
ir_sys
: The input system to handle clocks for.
Returns
sss
: Structurally simplified continuous-time system stripped of any discrete-time equations (these are handled by the callbacks).defaults
: The default values.inits
: Initialization function for discrete-time partitions.cbs
: A callback or a CallbackSet for discrete-time partitions.
JuliaSimCompiler.jacobian
— Methodjacobian(x::SymIR, args::Union{Vector{SymIR}, Vector{IRElement}}) -> SymIR
Compute the Jacobian of x
with respect to args
. toexpr(jacobian(x, args), args)
returns the expression of an inplace function that fills the elements of the Jacobian matrix in the first argument.
Example
using JuliaSimCompiler
const IR = JuliaSimCompiler
foo((x, y, z)) = [x^2 + y - z
sin(y * z) / x
hypot(x, y)]
x, y, z = Var.((:x, :y, :z))
args = [x, y, z]
J = IR.optimize(IR.jacobian(set_array(foo(args)), args))
J_ir! = eval(IR.toexpr(J, args; check = false))
num_args = [1, 2, 3]
J_ir = zeros(3, 3)
J_ir!(J_ir, num_args)
JuliaSimCompiler.loopend
— MethodEnds the preceding loop.
JuliaSimCompiler.loopstart
— Functionloopstart(niter::Int)
Marks the start of a loop with niter
iterations. Currently, only loops with a compile-time known number of iterations are supported.
JuliaSimCompiler.make_array
— Methodmake_array(xs::AbstractArray{<:SymNum, N}) where {N} -> SymArr
Construct a SymArr
from an array of SymNum
s.
JuliaSimCompiler.optimize
— Methodoptimize(ir::SymIR; maxiters = 10) -> SymIR
Optimize the IR by peephole optimization, copy propagation, and global value numbering. It runs these passes until the number of statements no longer changes or when maxiters
is reached.
JuliaSimCompiler.peephole_opt!
— Methodpeephole_opt!(x::SymIR) -> SymIR
Perfrom peephole optimization for SymIR in-place.
JuliaSimCompiler.set_array
— Methodset_array(xs::AbstractArray{<:SymIR, N}, idxss::AbstractArray{<:Any, N} = CartesianIndices(xs)) where {N} -> SymIR
Construct a SymIR
that sematically performs in-place operations to fill xs
to an array at idxss
indices.
JuliaSimCompiler.substitute
— Methodsubstitute(expr::SymIR, rules; fold = true, normalize = true) -> Union{SymIR, Number}
Substitute the variables in expr
according to the rules in rules
. If fold
is true, then the resulting expression will be folded as much as possible. If normalize
is true, then the rules will be normalized before substitution. Normalization of rules is required when rules
is not an instance of Dict{IRElement, Any}
.
Examples
julia> using JuliaSimCompiler
julia> x = JuliaSimCompiler.Var(:x)
%1 = x
julia> JuliaSimCompiler.substitute(sin(cos(x)), [x => 1.0])
0.5143952585235492
JuliaSimCompiler.toexpr
— Methodtoexpr(expr::SymIR, args...; check = true)
Convert a SymIR
to a Julia expression. The args
are the symbolic arguments of the expression. If check
is true, the function will check perform axes checks before annotating the rest of the function body with @inbounds
. If check
is false, no axes checks will be performed, and no @inbounds
annotation will be added. Hence, toexpr
always generates safe code. One can use set_array
to generate inplace code.
ModelingToolkit.structural_simplify
— Functionstructural_simplify(s::Union{IRState, IRState}; alias_eliminate = true, tearing = true, fully_determined = true, debug = false) -> ScheduledSystem
Structurally simply an IRSystem
or IRState
by running alias elimination, index reduction, dummy derivative, and tearing passes. The alias_eliminate
and tearing
keyword arguments control whether these transformation passes are performed. Note that index reduction and dummy derivative passes are always enabled to return a valid system. The debug
keyword argument controls verbose printing for debugging.
The returned ScheduledSystem
should behave like an ODESystem
from ModelingToolkit. It can be used to generate an ODEFunction
or ODEProblem
.